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Human pancreatic amyloid deposits comprising the islet 
amyloid polypeptide (I APPH, Figure 1) are characteristic of type 
II diabetes.1 AlO amino acid sequence within IAPPH (residues 
20-29) is sufficient for amyloid formation.2'3 We proposed a 
model for the IAPPH(20-29) peptide amyloid based on electron 
microscopy (EM),3 Fourier-transform infrared spectroscopy 
(FTIR), and solid-state nuclear magnetic resonance spectroscopy 
(ssNMR) studies,4 in which the GAIL5 sequence (residues 24-
27) forms an ordered antiparallel 0-sheet, while the termini of 
the peptide have a less regular and possibly more flexible 
structure.4 A peptide based on the rat IAPP(20-29) sequence, 
which differs from IAPPH at positions 23, 25, 26, 28, and 29, is 
not amyloidogenic.6 However, a peptide based on the cat IAPP 
sequence (IAPPc(20-29), Figure 1), which differs from the human 
sequence at positions 23 (Leu vs Phe) and 29 (Pro vs Ser), forms 
amyloid fibrils in vitro}'1 We report herein that both of these 
changes decrease the rate of nucleation and the rate of growth 
of the fibril and increase the solubility of the amyloid fibril. 

To separately measure the effects of the two amino acid 
differences between the human and cat IAPP(20-29) sequences, 
two peptides, in which each change was introduced separately 
(IAPPH(20-29)F23L and IAPPH(20-29)S29P, Figure 1), were 
studied, in addition to peptides based on the human (IAPPH-
(20-29)) and cat (IAPPc(20-29)) sequences.8 These four 
peptides constitute a cycle, the characteristics of which provide 
information regarding the structural basis of amyloid formation. 
If residues 23 and 29 do not interact in the fibril, then the kinetic 
and thermodynamic effects of each individual "mutation" would 
be expected to additive (ln(F23L) + ln(S29P) = In (overall effect), 
Figure I).9-10 In such a case, the effects of each "mutation" would 
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Figure 1. Primary structure of IAPPH and the cycle created by the four 
peptides discussed in this paper.10 

be context-independent (i.e., S29P = S29P' and F23L = F23L') 
and the cycle would be rectangular. Alternatively, if residues 23 
and 29 do interact, then the individual effects would be nonadditive 
(ln(F23L) + ln(S29P) ^ ln(overall effect)) and context-
dependent (e.g., S29P * S29P').10 

Each peptide slowly formed amyloid fibrils (EM) from a 
supersaturated solution.11 The resultant fibrils produced indis­
tinguishable FTIR spectra, suggestive of antiparallel /3-sheet 
structure (maximum at ca. 1630cm"1).12'13 Peptide films,4 formed 
by rapid evaporation of formic acid solutions, produced FTIR 
spectra similar to those of the fibrils, with one exception: the 
IAPPc(20-29) film FTIR spectrum indicated disordered structure 
(broad absorption band centered at 1641 cm-1). This result 
suggested that amyloid formation was slowest for the cat sequence 
and inspired the kinetic studies discussed below. 

Amyloid formation is a nucleation-dependent process.13-16 The 
requirement for nucleation leads to a delay in the appearance of 
insoluble amyloid fibrils, or lag time (Figure 2). The duration 
of the lag time depends, in part, on the association equilibria 
leading to nucleus formation (ATn).
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while the IAPPc(20-29) peptide nucleated approximately 13-
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assembled by successive addition of monomers, the lag time is exponentially 
dependent on the number of monomers required to form the nucleus.16 The 
aggregation experiments reported herein were done with consistent stirring, 
due to the need to suspend the aggregate to accurately measure turbidity." 
We have observed that stirring greatly increases the nucleation rate. In the 
case of IAPPH(20-29), the reaction order in peptide was determined to be 
between 1 and 2. In an unstirred case, where the reaction order could be much 
greater, small changes in K11 (which may correspond to similar changes in K1) 
will have dramatic effects on the lag time.15'16 Stirring may change the 
mechanism of amyloid formation by increasing the diffusion of small oligomers 
or by breaking up small fibrils to increase the number of growth faces. 
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Table I 

peptide 

IAPPH(20-29) 
IAPP"(20-29)F23L 
IAPPH(20-29)S29P 
IAPPc(20-29) 

lag time" (factorial increase 
relative to IAPPH(20-29)), s 

310 
840 (2.7) 

1100(3.6) 
4000(13) 

thermodynamic solubility4 

(factorial increase), MM 

9.0 
14(1.6) 
32 (3.6) 

109(12) 

growth rate X 104c 

(factorial decrease), AO.D.-s"1 

25 
5.8 (4.3) 
4.2 (6.0) 
1.0(25) 

IAPPH(20-29) 
seeded lag time,1' s 

26 
127 
126 
171 

" Lag time observed for each peptide at 690 jiM. Each value is an average of at least three separate experiments and was determined by solving 
for the best fit line to the growth phase of the aggregation curve for y = 0. The error in these measurements was <25% for IAPPH(20-29) and 
IAPPc(20-29) and <10% for the "mutants" (F23L, S29P). * Thermodynamic solubility of each peptide. Each value is an average of three separate 
experiments. The error in these measurements was ca. 10% for IAPPH(20-29) and IAPPH(20-29)F23L and <10% for the more soluble peptides. 
c Amyloid fibril growth rate of each peptide (aKt/k0ft). Turbidity (O.D.) was measured at 400 nm. Each value is an average of at least three experiments 
and was determined from the slope of the best fit line to the growth phase of the aggregation curve (Figure 2). The error in these values was <30% 
for the IAPPc(20-29) and < 15% for the other peptides. d Lag time of IAPPH(20-29) at 690 MM after the addition of 10 mol % of peptide fibrils (seeds). 
Each value is an average of two separate experiments and was determined by solving for the best fit line to the growth phase of the aggregation curve 
(Figure 2) for>> = initial turbidity (400 nm). The error in the short lag time (IAPPH(20-29)) was ca. 40%; however, the error in the other measurements 
was <8%. 
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Figure 2. (Top) Simple mechanism for amyloid fibril formation.16 

(Bottom) Representative aggregation curves for IAPPH(20-29) and 
IAPPc(20-29) at 690 nM measured by turbidity (400 nm).11 Note the 
discontinuous scale on the x axis. 

fold more slowly than IAPPH(20-29). Due to experimental error, 
it is not possible to determine whether the effects of each mutation 
on nucleation are independent or coupled. 

The postnucleation equilibrium constant (Kg, Figure 2) defines 
the thermodynamic solubility of each amyloid peptide (Table I). 
The F23L and S29P changes increased the solubility by 1.6-fold 
and 3.6-fold, respectively. Assuming independent effects, the 
IAPPc(20-29) peptide was expected to be ca. 6-fold more soluble 
than IAPPH(20-29) (AAG = In F23L + In S29P). However, the 
IAPPc(20-29) peptide was ca. 12-fold more soluble than 
IAPPH(20-29). The coupling of the two effects indicates that 
residues 23 and 29 interact in the amyloid fibril. This interaction 
could be direct or indirect, intramolecular or intermolecular. An 
intramolecular interaction is unlikely, since the effects of the 
mutations on the growth rate and, possibly, the lag time are 
independent. Therefore, we propose a direct intermolecular 
interaction between the side chains of F23 and S29 in the 
IAPPH(20-29) fibril. This proposal is consistent with our crude 
two-dimensional model of the IAPPH(20-29) amyloid fibril.4 

The low relative solubility of IAPPH(20-29) amyloid derives, 
in part, from its relatively rapid rate of growth (Table I). The 
effects of the two mutations on growth rate appear to be 
independent, suggesting that the growth rate depends primarily 
on the solution properties of the peptide. 

Structural differences between the four peptide fibrils were 
not detected by EM or FTIR but were suggested by seeding 
experiments. Amyloid formation can be seeded by preformed 
amyloid fibrils.13-16 This templating effect is very sensitive to 
subtle differences in fibril structure which cannot be detected by 
standard methods.13'14 The lag time of IAPPH(20-29) can be 
essentially eliminated by the addition of I APPH(20-29) seed fibrils 
(Table I). IAPPH(20-29)F23L and IAPPH(20-29)S29P are less 
effective seeds for IAPPH(20-29), and IAPPc(20-29) is even 
less effective as a seed.18 The observation that each of the peptide 
fibrils is a competent seed for IAPPH(20-29) supports the critical 
nature of the shared GAIL region.4 

Globular proteins can tolerate sequence changes without losing 
their ability to fold.19 Similarly, many sequences are capable of 
forming amyloid fibrils.3'20 However, subtle effects on the rate 
of amyloid formation or on the stability of the fibril may be 
critical factors in diseases which are characterized by in vivo 
amyloidogenesis.16 We have shown herein that the conservative 
change from Phe to Leu at position 23 has a significant effect 
on the stability of the I APP(20-29) amyloid fibril and on the rate 
of its formation. In addition, we have utilized an approach which 
is commonly used to study the mframolecular forces which govern 
the structure and folding of soluble, globular proteins9'10 to probe 
the intermolecular forces which govern the structure and assembly 
of an insoluble amyloid protein. This approach allows the 
identification of the critical intermolecular interactions which 
drive amyloid formation. 
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